
Let $p_n$ denote the $n$-th prime, and for any $k \geq 1$ and sufficiently large $X$, define the quantity $$ G_k(X) := \max_{p_{n+k} \leq X} \min( p_{n+1}-p_n, \dots, p_{n+k}-p_{n+k-1} ),$$ which measures the occurrence of chains of $k$ consecutive large gaps of primes. Recently, with Green and Konyagin, the authors showed that \[ G_1(X) \gg \frac{\log X \log \log X\log\log\log\log X}{\log \log \log X}\] for sufficiently large $X$. In this note, we combine the arguments in that paper with the Maier matrix method to show that \[ G_k(X) \gg \frac{1}{k^2} \frac{\log X \log \log X\log\log\log\log X}{\log \log \log X}\] for any fixed $k$ and sufficiently large $X$. The implied constant is effective and independent of $k$.
16 pages, no figures
Mathematics - Number Theory, 11N05, 11N35, FOS: Mathematics, Number Theory (math.NT)
Mathematics - Number Theory, 11N05, 11N35, FOS: Mathematics, Number Theory (math.NT)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
