
handle: 11573/33740
Some years ago, Yablo gave a paradox concerning an infinite sequence of sentences: if each sentence of the sequence is 'every subsequent sentence in the sequence is false', a contradiction easily follows. In this paper we suggest a formalization of Yablo's paradox in algebraic and topological terms. Our main theorem states that, under a suitable condition, any continuous function from 2N to 2N has a fixed point. This can be translated in the original framework as follows. Consider an infinite sequence of sentences, where any sentence refers to the truth values of the subsequent sentences: if the corresponding function is continuous, no paradox arises.
03A05, 03F45, ungrounded sentence, fixed point of a continuous function, 54D30, fixed point of a continuous function; ungrounded sentence
03A05, 03F45, ungrounded sentence, fixed point of a continuous function, 54D30, fixed point of a continuous function; ungrounded sentence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
