Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Graph The...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Graph Theory
Article . 2011 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Circular consecutive choosability of k-choosable graphs

Authors: Xuding Zhu; Daphne Der-Fen Liu; Serguei Norine; Zhishi Pan;

Circular consecutive choosability of k-choosable graphs

Abstract

Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r-coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k-choosable, then chcc(G)⩽k + 1 − 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2-choosable then chcc(G)⩽2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2-choosable graphs which are not 2-choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178-197, 2011 © 2011 Wiley Periodicals, Inc.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!