Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/physre...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comment on “Scrutinizing ππ scattering in light of recent lattice phase shifts”

Authors: Eef van Beveren; George Rupp;

Comment on “Scrutinizing ππ scattering in light of recent lattice phase shifts”

Abstract

In a recent paper by Xiu-Li Gao, Zhi-Hui Guo, Zhiguang Xiao, and Zhi-Yong Zhou, Phys. Rev. D 105, 094002 (2022), here referred to as I, $S$-wave $ππ$ scattering phase shifts obtained in a lattice-QCD calculation are analyzed using dispersive $S$-matrix methods. We question the reliability of the conclusion from this analysis that, for a pion mass of 391 MeV, the lattice phases favor the presence of both a $σ$-meson bound state and a nearby virtual state. Our main criticism concerns the neglect of the $S$-wave $K\bar{K}$ channel, which was considered alongside additional $s\bar{s}$ interpolating fields in the lattice computation used by the authors of I and also in typical coupled-channel models. As an illustration, some results from such a recent model are presented as well. Concluding remarks concern possible improvements of the analysis in I as well as further model tests.

1 page, 1 figure. v3: Considerably expanded, with an additional figure and several extra references; version accepted for publication in Phys. Rev. D as a Comment. v4: confusing typo corrected in final paragraph, viz. "chiral-symmetry constraints" should read "crossing-symmetry constraints"

Keywords

High Energy Physics - Phenomenology, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Lattice (hep-lat), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid
Related to Research communities