Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCrea
Article . 2022
Data sources: UCrea
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2022 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Crystal structure solution of a high-pressure polymorph of scintillating MgMoO4 and its electronic structure

Authors: J. Ruiz-Fuertes; A. Friedrich; N. Garg; V. Monteseguro; K. Radacki; D. Errandonea; E. Cavalli; +2 Authors

Crystal structure solution of a high-pressure polymorph of scintillating MgMoO4 and its electronic structure

Abstract

The structure of the potentially scintillating high-pressure phase of [Beta] - MgMoO 4 ( γ - MgMoO 4 ) has been solved by means of high-pressure single-crystal x-ray diffraction. The phase transition occurs above 1.5 GPa and involves an increase of the Mo coordination from fourfold to sixfold accommodated by a rotation of the polyhedra and a concommitant bond stretching resulting in an enlargement of the c axis. A previous high-pressure Raman study had proposed such changes with a symmetry change to space group P 2 / c . Here it has been found that the phase transition is isosymmetrical ( C 2 / m -> C 2 / m ). The bulk moduli and the compressibilities of the crystal axes of both the low- and the high-pressure phase, have been obtained from equation of state fits to the pressure evolution of the unit-cell parameters which were obtained from powder x-ray diffraction up to 12 GPa. The compaction of the crystal structure at the phase transition involves a doubling of the bulk modulus B 0 changing from 60.3(1) to 123.7(8) GPa and a change of the most compressible crystal axis from the (0, b , 0) direction in [Beta] - MgMoO 4 to the ( 0.9 a , 0, 0.5 a ) direction in γ - MgMoO 4 . The lattice dynamical calculations performed here on γ - MgMoO 4 served to explain the Raman spectra observed for the high-pressure phase of [Beta] - MgMoO 4 in a previous work demonstrating that the use of internal modes arguments in which the MoO n polyhedra are considered as separate vibrational units fails at least in this molybdate. The electronic structure of γ - MgMoO 4 was also calculated and compared with the electronic structures of [Beta] - MgMoO 4 and MgWO 4 shedding some light on why MgWO 4 is a much better scintillator than any of the phases of MgMoO 4 . These calculations yielded for γ - MgMoO 4 a Y 2 Γ -> Γ indirect band gap of 3.01 eV in contrast to the direct bandgaps of [Beta] - MgMoO 4 (3.58 eV at Γ ) and MgWO 4 (3.32 eV at Z ).

The authors thank I. Collings and M. Handfland from the ID15B beamline at the ESRF for their help during the experiments, and O. Gomis from the Universitat Politècnica de València for the discussions. Most of the work presented in this work benefited from the financial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) under Projects No. PID2019- 106383GB-C41/43 (MCIN/AEI/10.13039/501100011033), MALTA Consolider-Team network RED2018-102612- T (MINECO/AEI/10.13039/501100003329), and from the Generalitat Valenciana under Project PROMETEO/2018/123. V.M. also thanks the MICINN for the Beatriz Galindo distinguished researcher program (BG20/00077).

Countries
Italy, Spain
Keywords

540, 530

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 122
    download downloads 87
  • 122
    views
    87
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
122
87
Green