Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Differential Geometry and its Applications
Article . 2021 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lorentzian manifolds with shearfree congruences and Kähler-Sasaki geometry

Authors: Dmitri V. Alekseevsky; Masoud Ganji; Gerd Schmalz; Andrea Spiro;

Lorentzian manifolds with shearfree congruences and Kähler-Sasaki geometry

Abstract

We study Lorentzian manifolds $(M, g)$ of dimension $n\geq 4$, equipped with a maximally twisting shearfree null vector field $p_o$, for which the leaf space $S = M/\{\exp t p_o\}$ is a smooth manifold. If $n = 2k$, the quotient $S = M/\{\exp t p_o\}$ is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable K��hler manifold of real dimension $2k -2$. Going backwards through this line of ideas, for any quantisable K��hler manifold with associated Sasaki manifold $S$, we give the local description of all Lorentzian metrics $g$ on the total spaces $M$ of $A$-bundles $��: M \to S$, $A = S^1, \mathbb R$, such that the generator of the group action is a maximally twisting shearfree $g$-null vector field $p_o$. We also prove that on any such Lorentzian manifold $(M, g)$ there exists a non-trivial generalized electromagnetic plane wave having $p_o$ as propagating direction field, a result that can be considered as a generalization of the classical $4$-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle $M = \mathbb R \times S$ for any prescribed value of the Einstein constant. If $\dim M = 4$, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics.

37 pages; in v4, we corrected a sign in (5.1) and, in cascade, made adjustments in the subsequent formulas; the changes correspond to a change of orientation and have no effect in any result; we also improved the presentation in Sections 2 and 4 and added ackowledgments

Keywords

Mathematics - Differential Geometry, High Energy Physics - Theory, CR structures, CR operators, and generalizations, Kähler-Sasaki geometry, Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory, electromagnetic plane wave, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, Sub-Riemannian geometry, Special Riemannian manifolds (Einstein, Sasakian, etc.), Embeddings of CR manifolds, Differential Geometry (math.DG), High Energy Physics - Theory (hep-th), 83C20, 83C50, 53C25, 32V05, 32V30, 53C17, Taub-NUT metric, Electromagnetic fields in general relativity and gravitational theory, FOS: Mathematics, Lorentzian metric, Ricci flat metric

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
bronze