Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Crystallography Repo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Crystallography Reports
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal Expansion of EuF2 + x Single Crystals and Their Thermal Stability

Authors: D. N. Karimov; V. V. Grebenev; A. G. Ivanova; K. V. Khaydukov; A. A. Sidorov; E. A. Kulchenkov; P. A. Popov; +1 Authors

Thermal Expansion of EuF2 + x Single Crystals and Their Thermal Stability

Abstract

Thermal expansion of an EuF2.136 nonstoichiometric crystal with the fluorite structure type (Eu 0.864 2+ Eu 0.136 3+ F2.136, lattice parameter 5.82171(5) A) has been experimentally investigated in the temperature range of 9–500 K. The coefficient of thermal expansion is α = 15.8 × 10–6 K–1 at T = 300 K. The observed anomalies in the behavior of the coefficient of thermal expansion at T > 400 K are related to the oxidation processes with partition of Eu2+ ions. It is established by differential scanning calorimetry that the onset temperature of EuF2 + x oxidation in air is 430 K and that this process occurs in three stages. X-ray diffraction analysis shows that the oxidation is accompanied by the formation of a phase mixture based on two modifications of the Eu 1– 3+ Eu 2+ F3–y solid solution with the structure types of tysonite (LaF3), orthorhombic β-YF3 phase, and europium oxyfluorides of variable composition EuO1–xF1 + 2x, with dominance of the latter.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!