Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the S...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Steklov Institute of Mathematics
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Asymptotics of the Velocity Potential of an Ideal Fluid Flowing around a Thin Body

Authors: A. A. Ershov; Yu. A. Krutova;

Asymptotics of the Velocity Potential of an Ideal Fluid Flowing around a Thin Body

Abstract

We consider the Neumann problem outside a small neighborhood of a planar disk in the three-dimensional space. The surface of this neighborhood is assumed to be smooth, and its thickness is characterized by a small parameter e. A uniform asymptotic expansion of the solution of this problem with respect to e is constructed by the matching method. Since the problem turned out to be bisingular, an additional inner asymptotic expansion in the so-called stretched variables is constructed near the edge of the disk. A physical interpretation of the solution of this boundary value problem is the velocity potential of a laminar flow of an ideal fluid around a thin body, which is the neighborhood of the disk. It is assumed that this flow has unit velocity at a large distance from the disk, which is equivalent to the following condition for the potential: u(x1, x2, x3, e) = x3+O(r−2) as r → ∞, where r is the distance to the origin. The boundary condition of this problem is the impermeability of the surface of the body: ∂u/∂n = 0 at the boundary. After subtracting x3 from the solution u(x1, x2, x3, e), we get a boundary value problem for the potential ũ(x1, x2, x3, e) of the perturbed motion. Since the integral of the function ∂ũ/∂n over the surface of the body is zero, we have ũ(x1, x2, x3, e) = O(r−2) as r → ∞. Hence, all the coefficients of the outer asymptotic expansion with respect to e have the same behavior at infinity. However, these coefficients have growing singularities at the approach to the edge of the disk, which implies the bisingularity of the problem.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!