Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Engineering Computations
Article . 2017 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A computational framework for a two-scale generalized/extended finite element method

Generic imposition of boundary conditions
Authors: Malekan, Mohammad; Barros, Felício; Da Silva Pitangueira, Roque Luiz; Alves, Phillipe Daniel; Penna, Samuel Silva;

A computational framework for a two-scale generalized/extended finite element method

Abstract

Purpose This paper aims to present a computational framework to generate numeric enrichment functions for two-dimensional problems dealing with single/multiple local phenomenon/phenomena. The two-scale generalized/extended finite element method (G/XFEM) approach used here is based on the solution decomposition, having global- and local-scale components. This strategy allows the use of a coarse mesh even when the problem produces complex local phenomena. For this purpose, local problems can be defined where these local phenomena are observed and are solved separately by using fine meshes. The results of the local problems are used to enrich the global one improving the approximate solution. Design/methodology/approach The implementation of the two-scale G/XFEM formulation follows the object-oriented approach presented by the authors in a previous work, where it is possible to combine different kinds of elements and analyses models with the partition of unity enrichment scheme. Beside the extension of the G/XFEM implementation to enclose the global–local strategy, the imposition of different boundary conditions is also generalized. Findings The generalization done for boundary conditions is very important, as the global–local approach relies on the boundary information transferring process between the two scales of the analysis. The flexibility for the numerical analysis of the proposed framework is illustrated by several examples. Different analysis models, element formulations and enrichment functions are used, and the accuracy, robustness and computational efficiency are demonstrated. Originality/value This work shows a generalize imposition of different boundary conditions for global–local G/XFEM analysis through an object-oriented implementation. This generalization is very important, as the global–local approach relies on the boundary information transferring process between the two scales of the analysis. Also, solving multiple local problems simultaneously and solving plate problems using global–local G/XFEM are other contributions of this work.

Keywords

Two-scale analysis, Extended FEM, Boundary condition, Generalized FEM, Object-oriented design

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!