
doi: 10.3390/bdcc4040031
Semantic representation of unstructured text is crucial in modern artificial intelligence and information retrieval applications. The semantic information extraction process from an unstructured text fragment to a corresponding representation from a concept ontology is known as named entity disambiguation. In this work, we introduce a distributed, supervised deep learning methodology employing a long short-term memory-based deep learning architecture model for entity linking with Wikipedia. In the context of a frequently changing online world, we introduce and study the domain of online training named entity disambiguation, featuring on-the-fly adaptation to underlying knowledge changes. Our novel methodology evaluates polysemous anchor mentions with sense compatibility based on thematic segmentation of the Wikipedia knowledge graph representation. We aim at both robust performance and high entity-linking accuracy results. The introduced modeling process efficiently addresses conceptualization, formalization, and computational challenges for the online training entity-linking task. The novel online training concept can be exploited for wider adoption, as it is considerably beneficial for targeted topic, online global context consensus for entity disambiguation.
Technology, machine learning, word sense disambiguation, text annotation, named entity disambiguation, T, Wikification, ontologies, neural networks
Technology, machine learning, word sense disambiguation, text annotation, named entity disambiguation, T, Wikification, ontologies, neural networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
