Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Phycology
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica

Authors: Wanvisa Pugkaew; Metha Meetam; Kittisak Yokthongwattana; Namkhang Leeratsuwan; Prayad Pokethitiyook;

Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica

Abstract

Salinity is an important factor affecting microalgal production yield especially under the uncontrollable environments of outdoor cultivation systems. Elucidating the optimal salinity range for algal biomass and high-value biochemical production might help to increase the production potential and reduce cultivation cost. This study examined the effects of salinity changes from that of normal seawater level (30 ppt) to various salinities from 10 to 60 ppt on growth, biomass, photosynthesis, morphology, biochemical composition, fatty acid composition, and volumetric productivity of the marine microalga Tetraselmis suecica. The optimal salinity for biomass production of T. suecica was in the range from 20 to 60 ppt. Severe growth inhibition, alterations in cell morphology, and reduction of photosynthetic rate were found at low salinity of 10 ppt, suggesting that the algal cells suffered from osmotic and ionic imbalance. Total protein, carbohydrate, and lipid content were not significantly affected under the different salinities, although the increase in salinity from 30 to 50 and 60 ppt improved the total lipid productivity by nearly 22%. Fatty acid composition and content remained unchanged over the range of salinities. The predominant fatty acids were of C16 to C18 chain lengths, whereas eicosapentaenoic acid (EPA) was the major long-chain polyunsaturated fatty acid (LC-PUFA). Together these results demonstrate that a wide range of salinities are suitable for cultivation of in T. suecica without a compromise in biomass yield and biochemical composition.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!