Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY NC ND
Data sources: UnpayWall
https://doi.org/10.1101/478172...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcriptome landscape of the developing olive fruit fly embryo delineated by Oxford Nanopore long-read RNA-Seq

Authors: Bayega, Anthony; Oikonomopoulos, Spyros; Zorbas, Eleftherios; Wang, Yu Chang; Gregoriou, Maria-Eleni; Tsoumani, Konstantina T; Mathiopoulos, Kostas D; +1 Authors

Transcriptome landscape of the developing olive fruit fly embryo delineated by Oxford Nanopore long-read RNA-Seq

Abstract

AbstractThe olive fruit fly or olive fly (Bactrocera oleae) is the most important pest of cultivated olive trees. Like all insects the olive fly undergoes complete metamorphosis. However, the transcription dynamics that occur during early embryonic development have not been explored, while detailed transcriptomic analysis in the absence of a fully annotated genome is challenging. We collected olive fly embryos at hourly intervals for the first 6 hours of development and performed full-length cDNA-Seq using a purpose designed SMARTer cDNA synthesis protocol followed by sequencing on the MinION (Oxford Nanopore Technologies). We generated 31 million total reads across the timepoints (median yield 4.2 million per timepoint). The reads showed 98 % alignment rate to the olive fly genome and 91 % alignment rate to the NBCI predicted B. oleae gene models. Over 50 % of the expressed genes had at least one read covering its entire length validating our full-length RNA-Seq procedure. Expression of 68 % of the predicted B. oleae genes was detected in the first six hours of development. We generated a de novo transcriptome assembly of the olive fly and identified 3553 novel genes and a total of 79,810 transcripts; a fourfold increase in transcriptome diversity compared to the NCBI predicted transcriptome. On a global scale, the first six hours of embryo development were characterized by dramatic transcriptome changes with the total number of transcripts per embryo dropping to half from the first hour to the second hour of embryo development. Clustering of genes based on temporal co-expression followed by gene-set enrichment analysiss of genes expressed in the first six hours of embryo development showed that genes involved in transcription and translation, macro-molecule biosynthesis, and neurodevelopment were highly enriched. These data provide the first insight into the transcriptome landscape of the developing olive fly embryo. The data also reveal transcript signatures of sex development. Overall, full-length sequencing of the cDNA molecules permitted a detailed characterization of the isoform complexity and the transcriptional dynamics of the first embryonic stages of the B. oleae.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Green