Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1104/pp.108...
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.plantphysiol.org/co...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2008
Data sources: Hal
PLANT PHYSIOLOGY
Article . 2009
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcriptional Profiling of Mature Arabidopsis Trichomes Reveals That NOECK Encodes the MIXTA-Like Transcriptional Regulator MYB106

Authors: Jakoby, Marc J; Falkenhan, Doris; Mader, Michael T; Brininstool, Ginger; Wischnitzki, Elisabeth; Platz, Nicole; Hudson, Andrew; +3 Authors

Transcriptional Profiling of Mature Arabidopsis Trichomes Reveals That NOECK Encodes the MIXTA-Like Transcriptional Regulator MYB106

Abstract

Abstract Leaf hairs (trichomes) of Arabidopsis (Arabidopsis thaliana) have been extensively used as a model to address general questions in cell and developmental biology. Here, we lay the foundation for a systems-level understanding of the biology of this model cell type by performing genome-wide gene expression analyses. We have identified 3,231 genes that are up-regulated in mature trichomes relative to leaves without trichomes, and we compared wild-type trichomes with two mutants, glabra3 and triptychon, that affect trichome morphology and physiology in contrasting ways. We found that cell wall-related transcripts were particularly overrepresented in trichomes, consistent with their highly elaborated structure. In addition, trichome expression maps revealed high activities of anthocyanin, flavonoid, and glucosinolate pathways, indicative of the roles of trichomes in the biosynthesis of secondary compounds and defense. Interspecies comparisons revealed that Arabidopsis trichomes share many expressed genes with cotton (Gossypium hirsutum) fibers, making them an attractive model to study industrially important fibers. In addition to identifying physiological processes involved in the development of a specific cell type, we also demonstrated the utility of transcript profiling for identifying and analyzing regulatory gene function. One of the genes that are differentially expressed in fibers is the MYB transcription factor GhMYB25. A combination of transcript profiling and map-based cloning revealed that the NOECK gene of Arabidopsis encodes AtMYB106, a MIXTA-like transcription factor and homolog of cotton GhMYB25. However, in contrast to Antirrhinum, in which MIXTA promotes epidermal cell outgrowth, AtMYB106 appears to function as a repressor of cell outgrowth in Arabidopsis.

Keywords

Transcription, Genetic, Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, RNA, Messenger, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, Transcription Factors, Up-Regulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    223
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
223
Top 1%
Top 10%
Top 1%
Green
hybrid