
doi: 10.1093/ndt/gft415
pmid: 24166465
We previously reported that radicicol (Hsp90 inhibitor) induced a reduction in the renal blood flow and glomerular filtration rate, in part due to a reduction in urinary NO2/NO3 excretion, suggesting that Hsp90 regulates renal vascular tone in physiological conditions. However, there is a lack of information concerning Hsp90α or Hsp90β role on eNOS activity and their association with acute kidney injury (AKI) characterized by an inadequate NO production. This study evaluated the effects of Hsp90α or Hsp90β intra-renal transfection under ischemia/reperfusion (IR) injury.Uninephrectomized (Nx) rats were intra-renally transfected through injections with Hsp90α or Hsp90β cloned into pcDNA3.1(+) or empty vector (EV) at 48 h before inducing IR, as indicated in the following groups: (i) Nx+sham, (ii) Nx+IR, (iii) Nx+IR+EV, (iv) Nx+IR+Hsp90α and (v) Nx+IR+Hsp90β. After 24 h, physiological, histopathological, biochemical and molecular studies were performed.IR-induced renal dysfunction, structural injury, tubular proliferation, the elevation of urinary Hsp72 and the reduction of urinary NO2/NO3 excretion. These alterations were associated with reduced eNOS-Hsp90 coupling and changes in the eNOS phosphorylation state mediated through a reduction in PKCα and increased Rho kinase expression. In contrast, intra-renal transfection of Hsp90α or Hsp90β prevented IR injury that was associated with the restoration of eNOS-Hsp90 coupling, eNOS activating phosphorylation and PKCα and Rho kinase levels.Here we showed that eNOS-Hsp90 uncoupling plays a critical role in promoting NO reduction during IR. This effect was effectively reversed through Hsp90α or Hsp90β intra-renal transfection, suggesting their implication in regulating NO/eNOS pathway and the renal vascular tone.
Male, Membrane Glycoproteins, Protein Kinase C-alpha, Nitric Oxide Synthase Type III, Blotting, Western, Genetic Vectors, Acute Kidney Injury, Nitric Oxide, Immunohistochemistry, Rats, Disease Models, Animal, Oxidative Stress, Kidney Tubules, Reperfusion Injury, Animals, HSP90 Heat-Shock Proteins, Phosphorylation, Rats, Wistar, Glomerular Filtration Rate, Plasmids
Male, Membrane Glycoproteins, Protein Kinase C-alpha, Nitric Oxide Synthase Type III, Blotting, Western, Genetic Vectors, Acute Kidney Injury, Nitric Oxide, Immunohistochemistry, Rats, Disease Models, Animal, Oxidative Stress, Kidney Tubules, Reperfusion Injury, Animals, HSP90 Heat-Shock Proteins, Phosphorylation, Rats, Wistar, Glomerular Filtration Rate, Plasmids
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
