
arXiv: 1510.05256
Abstract Let $U$ be a horospherical subgroup of a noncompact simple Lie group $H$ and let $A$ be a maximal split torus in the normalizer of $U$. We define the expanding cone $A_U^+$ in $A$ with respect to $U$ and show that it can be explicitly calculated. We prove several dynamical results for translations of $U$-slices by elements of $A_U^+$ on a finite volume homogeneous space $G/\Gamma $ where $G$ is a Lie group containing $H$. More precisely, we prove quantitative nonescape of mass and equidistribution of a $U$-slice. If $H$ is a normal subgroup of $G$ and the $H$ action on $G/\Gamma $ has a spectral gap, we prove effective multiple equidistribution and pointwise equidistribution with an error rate. In this paper, we formulate the notion of the expanding cone and prove the dynamical results above in the more general setting where $H$ is a semisimple Lie group without compact factors. In the appendix, joint with Rene Rühr, we prove a multiple ergodic theorem with an error rate.
FOS: Mathematics, Dynamical Systems (math.DS), Mathematics - Dynamical Systems
FOS: Mathematics, Dynamical Systems (math.DS), Mathematics - Dynamical Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
