
The examination of jaw movement during exercise is essential for an improved understanding of jaw function. Currently, there is no unified view of the mechanism by which the mandible is fixed during physical exercise. We hypothesized that during strong skeletal muscle force exertion in dynamic exercises, the mandible is displaced to a position other than the maximal intercuspal position and that mouth-opening and mouth-closing muscles simultaneously contract to fix the displaced mandible. Therefore, we simultaneously recorded mandibular jaw movements and masticatory muscle activities during dynamic trunk muscle force exertion (deadlift exercise) in 24 healthy adult males (age, 27.3 ± 2.58 years). The deadlift was divided into three steps: Ready (reference), Pull, and Down. During Pull, the mandibular incisal point moved significantly posteriorly (−0.24 mm, p = 0.023) and inferiorly (−0.55 mm, p = 0.019) from the maximal intercuspal position. Additionally, temporal, masseter, and digastric muscles were activated simultaneously and significantly during Pull (18.63 ± 17.13%, 21.21 ± 18.73%, 21.82 ± 19.97% of the maximum voluntary contraction, respectively), with maintained activities during Down (p < 0.001). Thus, during dynamic trunk muscle force exertion, the mandibular incisal point moved to a posteroinferior position without tooth-touch (an open-mouth position). Simultaneously, the activities of the mouth-opening digastric muscles and the mouth-closing temporal and masseter muscles led to mandibular fixation, which is a type of mandible fixing called bracing.
mandibular jaw movement, bracing, Dentistry, masticatory muscle activity, dynamic trunk exercise, RK1-715, mandibular fixation, Article
mandibular jaw movement, bracing, Dentistry, masticatory muscle activity, dynamic trunk exercise, RK1-715, mandibular fixation, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
