
arXiv: 2110.13579
Consider a compact Kähler manifold which either admits an extremal Kähler metric, or is a small deformation of such a manifold. We show that the blowup of the manifold at a point admits an extremal Kähler metric in Kähler classes making the exceptional divisor sufficiently small if and only if it is relatively K-stable, as predicted by the Yau-Tian-Donaldson conjecture. We also give a geometric interpretation of what relative K-stability means in this case in terms of finite dimensional geometric invariant theory. This gives a complete solution to a problem introduced and solved by Arezzo, Pacard, Singer and Székelyhidi for constant scalar curvature Kähler metrics in dimension at least three.
v2: strategy corrected, main results unchanged, 41pp
Mathematics - Differential Geometry, Mathematics - Algebraic Geometry, Differential Geometry (math.DG), FOS: Mathematics, Algebraic Geometry (math.AG)
Mathematics - Differential Geometry, Mathematics - Algebraic Geometry, Differential Geometry (math.DG), FOS: Mathematics, Algebraic Geometry (math.AG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
