
handle: 10481/58094
Let $E$ and $P$ be subsets of a Banach space $X$, and let us define the unit sphere around $E$ in $P$ as the set $$Sph(E;P) :=\left\{ x\in P : \|x-b\|=1 \hbox{ for all } b\in E \right\}.$$ Given a C$^*$-algebra $A$, and a subset $E\subset A,$ we shall write $Sph^+ (E)$ or $Sph_A^+ (E)$ for the set $Sph(E;S(A^+)),$ where $S(A^+)$ stands for the set of all positive operators in the unit sphere of $A$. We prove that, for an arbitrary complex Hilbert space $H$, then a positive element $a$ in the unit sphere of $B(H)$ is a projection if and only if $Sph^+_{B(H)} \left( Sph^+_{B(H)}(\{a\}) \right) =\{a\}$. We also prove that the equivalence remains true when $B(H)$ is replaced with an atomic von Neumann algebra or with $K(H_2)$, where $H_2$ is an infinite-dimensional and separable complex Hilbert space. In the setting of compact operators we prove a stronger conclusion by showing that the identity $$Sph^+_{K(H_2)} \left( Sph^+_{K(H_2)}(a) \right) =\left\{ b\in S(K(H_2)^+) : \!\! \begin{array}{c} s_{_{K(H_2)}} (a) \leq s_{_{K(H_2)}} (b), \hbox{ and } \textbf{1}-r_{_{B(H_2)}}(a)\leq \textbf{1}-r_{_{B(H_2)}}(b) \end{array}\!\! \right\},$$ holds for every $a$ in the unit sphere of $K(H_2)^+$, where $r_{_{B(H_2)}}(a)$ and $s_{_{K(H_2)}} (a)$ stand for the range and support projections of $a$ in $B(H_2)$ and $K(H_2)$, respectively.
arXiv admin note: substantial text overlap with arXiv:1711.05652
bounded linear operator, compact linear operator, 46L05, Mathematics - Operator Algebras, FOS: Mathematics, projection, 47L30, unit sphere around a subset, Operator Algebras (math.OA), 47A05
bounded linear operator, compact linear operator, 46L05, Mathematics - Operator Algebras, FOS: Mathematics, projection, 47L30, unit sphere around a subset, Operator Algebras (math.OA), 47A05
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
