
The Trotterized Unitary Coupled Cluster Single and Double (UCCSD) ansatz has recently attracted interest due to its use in Variation Quantum Eigensolver (VQE) molecular simulations on quantum computers. However, when the size of molecules increases, UCCSD becomes less interesting as it cannot achieve sufficient accuracy. Including higher-order excitations is therefore mandatory to recover the UCC's missing correlation effects. In this Letter, we extend the Trotterized UCC approach via the addition of (true) Triple T excitations introducing UCCSDT. We also include both spin and orbital symmetries. Indeed, in practice, these later help to reduce unnecessarily circuit excitations and thus accelerate the optimization process enabling to tackle larger molecules. Our initial numerical tests (12-14 qubits) show that UCCSDT improves the overall accuracy by at least two-orders of magnitudes with respect to standard UCCSD. Overall, the UCCSDT ansatz is shown to reach chemical accuracy and to be competitive with the CCSD(T) gold-standard classical method of quantum chemistry.
Chemical Physics (physics.chem-ph), Quantum Physics, UCCSDT, FOS: Physical sciences, triple excitations, Quantum computing, QLM, [CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry, Physics - Chemical Physics, Coupled cluster theory, Quantum Physics (quant-ph), Quantum chemistry, [PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
Chemical Physics (physics.chem-ph), Quantum Physics, UCCSDT, FOS: Physical sciences, triple excitations, Quantum computing, QLM, [CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry, Physics - Chemical Physics, Coupled cluster theory, Quantum Physics (quant-ph), Quantum chemistry, [PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
