Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Physics...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematical Physics Analysis and Geometry
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Self-Adjointness of H+A∗+A

On the self-adjointness of \(H+A^*+A\)
Authors: Andrea Posilicano;

On the Self-Adjointness of H+A∗+A

Abstract

AbstractLet $H:\text {dom}(H)\subseteq \mathfrak {F}\to \mathfrak {F}$ H : dom ( H ) ⊆ F → F be self-adjoint and let $A:\text {dom}(H)\to \mathfrak {F}$ A : dom ( H ) → F (playing the role of the annihilation operator) be H-bounded. Assuming some additional hypotheses on A (so that the creation operator A∗ is a singular perturbation of H), by a twofold application of a resolvent Kreı̆n-type formula, we build self-adjoint realizations $\widehat H$ H ̂ of the formal Hamiltonian H + A∗ + A with $\text {dom}(H)\cap \text {dom}(\widehat H)=\{0\}$ dom ( H ) ∩ dom ( H ̂ ) = { 0 } . We give an explicit characterization of $\text {dom}(\widehat H)$ dom ( H ̂ ) and provide a formula for the resolvent difference $(-\widehat H+z)^{-1}-(-H+z)^{-1}$ ( − H ̂ + z ) − 1 − ( − H + z ) − 1 . Moreover, we consider the problem of the description of $\widehat H$ H ̂ as a (norm resolvent) limit of sequences of the kind $H+A^{*}_{n}+A_{n}+E_{n}$ H + A n ∗ + A n + E n , where the An’s are regularized operators approximating A and the En’s are suitable renormalizing bounded operators. These results show the connection between the construction of singular perturbations of self-adjoint operators by Kreı̆n’s resolvent formula and nonperturbative theory of renormalizable models in Quantum Field Theory; in particular, as an explicit example, we consider the Nelson model.

Keywords

Quantum Physics, renormalisable QFT models, FOS: Physical sciences, Mathematical Physics (math-ph), Krein’s resolvent formula; Renormalizable QFT models; Selfadjoint operators; Singular perturbations, Kreĭn's resolvent formula, Functional Analysis (math.FA), Linear symmetric and selfadjoint operators (unbounded), Mathematics - Functional Analysis, selfadjoint operators, FOS: Mathematics, Spectrum, resolvent, singular perturbations, Quantum Physics (quant-ph), Mathematical Physics, Selfadjoint operator theory in quantum theory, including spectral analysis, Nonperturbative methods of renormalization applied to problems in quantum field theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
hybrid