Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metallurgical and Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Metallurgical and Materials Transactions B
Article . 2018 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and Fabrication of Pellets for Magnesium Production by Carbothermal Reduction

Authors: Scott C. Rowe; Alan W. Weimer; Kevin Y. Sun; Mark A. Wallace; Boris A. Chubukov; Aaron W. Palumbo;

Design and Fabrication of Pellets for Magnesium Production by Carbothermal Reduction

Abstract

For carbothermal reduction (CTR) to be an economic and clean process for magnesium metal production, operational challenges must be overcome. Strong and reactive precursor pellets are necessary to effectively and selectively produce Mg(g) from any feedstock. In this study, the effects of ore (magnesia and dolime), carbon (petroleum coke, charcoal, algal char, and carbon black), and binder (organic and inorganic) on pellet strength and reactivity, product yield and purity, and reduction selectivity were analyzed. Theoretically and experimentally, the CTR of dolime (MgO·CaO) favored MgO reduction over CaO reduction; however, with enough carbon and heat, both oxides could be reduced. CaO carbothermal reduction produced CaC2 and Ca(g). The selectivity to CaC2 remained constant (7 ± 4 pct) for all C/MgO·CaO ratios analyzed, while the selectivity to Ca(g) increased (5 pct → 40 pct) when C/MgO·CaO was increased from 0.5 to 2.0. As the overall metal yield decreased (77.6 pct → 59.7 pct) with increasing CaO reduction (38.2 pct → 78.1 pct), Ca(g) reverted faster than Mg(g). Heavy metal impurities primarily remained in the residue ( 78 pct volatilized). Organic binders added reducing power to the pellets but produced frail pellets (radial crush strength = 9.1 ± 0.7 N) after pyrolysis, relative to pellets with inorganic binders (15.1 ± 3.2 N). Kinetic parameters were determined for extruded pellets to predict the reaction rate as a continuous function of pressure and temperature.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?