Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Statistical Association
Article . 2020 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structure and Sensitivity in Differential Privacy: Comparing K -Norm Mechanisms

Authors: Aleksandra B. Slavkovic; Jordan Awan;

Structure and Sensitivity in Differential Privacy: Comparing K -Norm Mechanisms

Abstract

Differential privacy (DP), provides a framework for provable privacy protection against arbitrary adversaries, while allowing the release of summary statistics and synthetic data. We address the problem of releasing a noisy real-valued statistic vector $T$, a function of sensitive data under DP, via the class of $K$-norm mechanisms with the goal of minimizing the noise added to achieve privacy. First, we introduce the sensitivity space of $T$, which extends the concepts of sensitivity polytope and sensitivity hull to the setting of arbitrary statistics $T$. We then propose a framework consisting of three methods for comparing the $K$-norm mechanisms: 1) a multivariate extension of stochastic dominance, 2) the entropy of the mechanism, and 3) the conditional variance given a direction, to identify the optimal $K$-norm mechanism. In all of these criteria, the optimal $K$-norm mechanism is generated by the convex hull of the sensitivity space. Using our methodology, we extend the objective perturbation and functional mechanisms and apply these tools to logistic and linear regression, allowing for private releases of statistical results. Via simulations and an application to a housing price dataset, we demonstrate that our proposed methodology offers a substantial improvement in utility for the same level of risk.

40 pages, 6 figures, 1 table

Related Organizations
Keywords

Methodology (stat.ME), FOS: Computer and information sciences, 62J05, 62J07, 62J12, 68W20, Statistics - Methodology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Green
bronze