Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ProfNER corpus: gold standard annotations for profession detection in Spanish COVID-19 tweets

Authors: Miranda-Escalada, Antonio; Briva-Iglesias, Vicent; Farré, Eulàlia; Lima López, Salvador; Aguero, Marvin; Krallinger, Martin;

ProfNER corpus: gold standard annotations for profession detection in Spanish COVID-19 tweets

Abstract

THERE IS A NEWER VERSION (1.3) THAT INCORPORATES THE UNANNOTATED TEST AND BACKGROUND FILES Gold Standard annotations for SMM4H-Spanish shared task. SMM4H 2021 accepted at NAACL (scheduled in Mexico City in June) https://2021.naacl.org/. Introduction: The entire corpus contains 10,000 annotated tweets. It has been split into training, validation and test (60-20-20). The current version contains the training and development set of the shared task with Gold Standard annotations. In future versions of the dataset, test and background sets will be released. For the subtask-1 (classification), annotations are distributed in a tab-separated file (TSV). The TSV format follows the format employed in SMM4H 2019 Task 2: tweet_id class For the subtask-2 (Named Entity Recognition, profession detection), annotations are distributed in 2 formats: Brat standoff and TSV. See Brat webpage for more information about Brat standoff format (https://brat.nlplab.org/standoff.html). The TSV format follows the format employed in SMM4H 2019 Task 2: tweet_id begin end type extraction In addition, we provide a tokenized version of the dataset, for participant's convenience. It follows the BIO format (similar to CONLL). The files were generated with the brat_to_conll.py script (included), which employs the es_core_news_sm-2.3.1 Spacy model for tokenization. Zip structure: txt-files: folder with text files. One text file per tweet. One sub-directory per corpus split (train and valid). txt-files-english: folder with text files Machine Translated to English. subtask-1: One file per corpus split (train.tsv and valid.tsv). subtask-2: brat: folder with annotations in Brat format. One sub-directory per corpus split (train and valid). tsv: folder with annotations in TSV. One file per corpus split (train and valid). BIO: folder with corpus in BIO tagging. One file per corpus split (train and valid). Annotation quality: We have performed a consistency analysis of the corpus. 10% of the documents have been annotated by an internal annotator as well as by the linguist experts following the same annotation guideliens. The preliminary Inter-Annotator Agreement (pairwise agreement) is 0.919. Important shared task information: SYSTEM PREDICTIONS MUST FOLLOW THE TSV FORMAT. And systems will only be evaluated for the PROFESION and SITUACION_LABORAL predictions (despite the Gold Standard contains 2 extra entity classes). For more information about the evaluation scenario, see the Codalab link, or the evaluation webpage. For further information, please visit https://temu.bsc.es/smm4h-spanish/ or email us at encargo-pln-life@bsc.es Do not share the data with other individuals/teams without permission from the task organizer. Tweets IDs are the primary source of information. Tweet texts are provided as support material. By downloading this resource, you agree to the Twitter Terms of Service, Privacy Policy, Developer Agreement, and Developer Policy. Resources: Web Annotation guidelines (in Spanish) Annotation guidelines (in English) FastText COVID-19 Twitter embeddings Occupations gazetteer

Funded by the Plan de Impulso de las Tecnologías del Lenguaje (Plan TL).

Related Organizations
Keywords

Professions, Twitter, NER, Gold Standard, profner, clinical NLP, Occupations, smm4h, NLP, Social Media

EOSC Subjects

Twitter Data

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 396
    download downloads 5K
  • 396
    views
    5K
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
396
5K