Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Oceans
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Observation Impact in a Regional Reanalysis of the East Australian Current System

Authors: Colette Kerry; Moninya Roughan; Brian Powell;

Observation Impact in a Regional Reanalysis of the East Australian Current System

Abstract

AbstractThe East Australia Current dominates the circulation along the east coast of Australia; therefore, identifying observations that best constrain its transport and eddies may help improve circulation estimates. Observational data sets are sparse in time and space and numerical models are unable to predict the timing and location of eddies due to their chaotic nature. Data assimilation combines observations with a numerical model such that the model better represents the observations and provides the dynamic context. This study uses variational methods to quantify how oceanic observations from various platforms impact model estimates of transport and eddy kinetic energy in the East Australia Current. The most influential observations are, in this order, satellite‐derived sea surface temperature; radial components of sea surface velocity from an high‐frequency radar array midway along the coast; satellite‐derived sea surface height, temperature, salinity, and velocity observations from a full‐depth mooring array in the upstream portion of the domain; and subsurface hydrographic data measured by ocean gliders. Not only do the high‐frequency radar observations have high impact on transport estimates at the array location, but also they have significant impact both upstream and downstream. Likewise, the impact of the mooring array observations is far reaching, contributing to transport estimates hundreds of kilometers downstream. The observation impact of deep gliders deployed into eddies is particularly high. Significantly, we find that observations taken in regions with greater natural variability contribute most to constraining the model estimates.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
bronze