
arXiv: 1812.06735
AbstractWe show that if A is a finite K-approximate subgroup of an s-step nilpotent group then there is a finite normal subgroup $H \subset {A^{{K^{{O_s}(1)}}}}$ modulo which ${A^{{O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)}}$ contains a nilprogression of rank at most ${O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)$ and size at least $\exp ( - {O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K))|A|$. This partially generalises the close-to-optimal bounds obtained in the abelian case by Sanders, and improves the bounds and simplifies the exposition of an earlier result of the author. Combined with results of Breuillard–Green, Breuillard–Green–Tao, Gill–Helfgott–Pyber–Szabó, and the author, this leads to improved rank bounds in Freiman-type theorems in residually nilpotent groups and certain linear groups of bounded degree.
Arithmetic combinatorics; higher degree uniformity, Mathematics - Number Theory, Inverse problems of additive number theory, including sumsets, Nilpotent groups, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Group Theory (math.GR), Number Theory (math.NT), Mathematics - Group Theory
Arithmetic combinatorics; higher degree uniformity, Mathematics - Number Theory, Inverse problems of additive number theory, including sumsets, Nilpotent groups, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Group Theory (math.GR), Number Theory (math.NT), Mathematics - Group Theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
