Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of dominant mutations that confer increased aluminium tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3-1

Authors: Kelly M, Gabrielson; Jesse D, Cancel; Luis F, Morua; Paul B, Larsen;

Identification of dominant mutations that confer increased aluminium tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3-1

Abstract

Aluminium (Al) toxicity is a global agricultural problem that occurs in acid soil environments and severely limits root growth and crop productivity. The isolation and characterization of a gene, ALS3, which is absolutely required by Arabidopsis seedlings for growth in an Al-toxic environment was reported previously. Since the als3-1 loss-of-function mutant has extreme root growth inhibition even in the presence of very low levels of Al, it was an excellent candidate for using a mutagenesis approach to identify suppressor mutations that would increase either Al resistance or tolerance in Arabidopsis roots. EMS-mutagenized als3-1 seedlings were screened for mutants that could sustain root growth in an Al-containing environment that is highly toxic to als3-1 but not Col-0 wt. This approach resulted in identification of 12 strong suppressor mutants that reversed the als3-1 phenotype and grew as well or better than Col-0 wt in the presence of high levels of Al. Subsequent analysis of three representative suppressor mutants revealed that the phenotype of each probably arises from dominant gain-of-function mutations at the same locus. Detailed analysis of one of these, alt1-1 (Al tolerant), suggests that this mutation positively impacts Al resistance in a manner dependent on pH adjustment rather than enhanced Al exclusion. Identification of these suppressor mutations, should not only further elucidate the biochemical and molecular mechanisms underlying Al toxicity and tolerance but also will develop a collection of mutations that may be useful for engineering crop plants that can grow and thrive in Al-toxic environments.

Related Organizations
Keywords

Arabidopsis Proteins, Arabidopsis, Chromosome Mapping, Genes, Plant, Plant Roots, Suppression, Genetic, Mutation, ATP-Binding Cassette Transporters, Glucans, Aluminum

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
bronze