Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2009
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

More on the phi = beta Conjecture and Eigenvalues of Random Graph Lifts

Authors: Lui, Edward; Puder, Doron;

More on the phi = beta Conjecture and Eigenvalues of Random Graph Lifts

Abstract

Let $G$ be a connected graph, and let $��_1$ and $��$ denote the spectral radius of $G$ and the universal cover of $G$, respectively. In \cite{Fri03}, Friedman has shown that almost every $n$-lift of $G$ has all of its new eigenvalues bounded by $O(��_1^{1/2}��^{1/2})$. In \cite{LP10}, Linial and Puder have improved this bound to $O(��_1^{1/3}��^{2/3})$. Friedman had conjectured that this bound can actually be improved to $��+ o_n(1)$ (e.g., see \cite{Fri03,HLW06}). In \cite{LP10}, Linial and Puder have formulated two new categorizations of formal words, namely $��$ and $��$, which assign a non-negative integer or infinity to each word. They have shown that for every word $w$, $��(w) = 0$ iff $��(w) = 0$, and $��(w) = 1$ iff $��(w) = 1$. They have conjectured that $��(w) = ��(w)$ for every word $w$, and have run extensive numerical simulations that strongly suggest that this conjecture is true. This conjecture, if proven true, gives us a very promising approach to proving a slightly weaker version of Friedman's conjecture, namely the bound $O(��)$ on the new eigenvalues (see \cite{LP10}). In this paper, we make further progress towards proving this important conjecture by showing that $��(w) = 2$ iff $��(w) = 2$ for every word $w$.

24 pages

Keywords

05C50, 05C80, 68R15, 20F10, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green