Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cerebral Cortexarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cerebral Cortex
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cerebral Cortex
Article . 2014 . Peer-reviewed
Data sources: Crossref
Cerebral Cortex
Article . 2016
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Disruption ofVisc-2, a Brain-Expressed Conserved Long Noncoding RNA, Does Not Elicit an Overt Anatomical or Behavioral Phenotype

Authors: P. L. Oliver; R. A. Chodroff; A. Gosal; B. Edwards; A. F. P. Cheung; J. Gomez-Rodriguez; G. Elliot; +6 Authors

Disruption ofVisc-2, a Brain-Expressed Conserved Long Noncoding RNA, Does Not Elicit an Overt Anatomical or Behavioral Phenotype

Abstract

Although long noncoding RNAs (lncRNAs) are proposed to play essential roles in mammalian neurodevelopment, we know little of their functions from their disruption in vivo. Combining evidence for evolutionary constraint and conserved expression data, we previously identified candidate lncRNAs that might play important and conserved roles in brain function. Here, we demonstrate that the sequence and neuronal transcription of lncRNAs transcribed from the previously uncharacterized Visc locus are conserved across diverse mammals. Consequently, one of these lncRNAs, Visc-2, was selected for targeted deletion in the mouse, and knockout animals were subjected to an extremely detailed anatomical and behavioral characterization. Despite a neurodevelopmental expression pattern of Visc-2 that is highly localized to the cortex and sites of neurogenesis, anomalies in neither cytoarchitecture nor neuroproliferation were identified in knockout mice. In addition, no abnormal motor, sensory, anxiety, or cognitive behavioral phenotypes were observed. These results are important because they contribute to a growing body of evidence that lncRNA loci contribute on average far less to brain and biological functions than protein-coding loci. A high-throughput knockout program focussing on lncRNAs, similar to that currently underway for protein-coding genes, will be required to establish the distribution of their organismal functions.

Country
United Kingdom
Keywords

Male, Mice, Knockout, Mice, Inbred BALB C, Base Sequence, Behavior, Animal, Brain, Articles, Anxiety, Motor Activity, Evolution, Molecular, Mice, Inbred C57BL, Mice, Phenotype, Animals, Female, RNA, Long Noncoding, Maze Learning, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Green
hybrid