Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plant Bio-transformable HMG-CoA Reductase Gene Loaded Calcium Phosphate Nanoparticle: In vitro Characterization and Stability Study

Authors: Mehrnaz S, Ohadi R; Amene, Alvari; M, Samim; Malik Z, Abdin;

Plant Bio-transformable HMG-CoA Reductase Gene Loaded Calcium Phosphate Nanoparticle: In vitro Characterization and Stability Study

Abstract

Encapsulation of plasmid DNA in nanoparticle is expected to enhance the stability of DNA, reproducibility and frequency of the genetic transformation in plants. Here we report the formulation of HMG Co-A reductase gene loaded calcium phosphate nanoparticles (Cap nanoparticles) and their in-vitro, in-vivo characterization. The developed Cap nanoparticles were characterized by DSC, FT-IR, and XRD. Developed Cap nanoparticles were spherical in shape having the particle size and zeta potential in the range of 10.86±0.09nm to 33.42±0.18nm and -25.5±0.07mV to -31.7±0.07mV (for Cap-I to Cap-IV). DNA releasing in acidic media showed, initially slow release followed by fast release with a maximum release of Cap-I (95.77±1.39%) > Cap-II (87.32±2.07%) > Cap-III (76.54±2.01%) > Cap-IV (72.93±1.75%) over 60min. Cap nanoparticles were quite stable at storage condition of 40±0.5°C/75±5%RH, 25±0.5°C/60±RH, 4±0.5°C/ambient humidity and the integrity of pDNA encapsulated was confirmed by gel electrophoresis. Compared to wild type C. intybus, transformation efficiency and enhanced biosynthesis of esculin with the DNA nanoparticles in C. intybus were about 10% and 71%, respectively. Antioxidant activity capacity of the biotransformed plants was significantly higher than the normal plant due to high accumulation of esculin.

Related Organizations
Keywords

Calcium Phosphates, Drug Carriers, Plant Extracts, Gene Transfer Techniques, Plants, Genetically Modified, Antioxidants, Esculin, Plant Leaves, Drug Stability, Nanoparticles, Hydroxymethylglutaryl CoA Reductases, Cichorium intybus

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!