Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Materials R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials Research
Article . 2011 . Peer-reviewed
License: Trans Tech Publications Copyright and Content Usage Policy
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Negative Thermal Expansion of Gd<sub>2</sub>Fe<sub>16.5</sub>Cr<sub>0.5</sub> Compound with Th<sub>2</sub>Ni<sub>17</sub>-Type Structure

Authors: Yan Ming Hao; Fei Fei Liang; Xiao Hong He; Wu Yan Zhao; Yue Ting Qin; Fang Wang;

Negative Thermal Expansion of Gd<sub>2</sub>Fe<sub>16.5</sub>Cr<sub>0.5</sub> Compound with Th<sub>2</sub>Ni<sub>17</sub>-Type Structure

Abstract

The thermal expansion and the Curie temperature of Gd2Fe16.5Cr0.5 compound have been investigated by means of x-ray diffraction and magnetization measurements. The result shows that the Gd2Fe16.5Cr0.5 compound annealed at 1243°C has a hexagonal Th2Ni17-type structure. Cr atom substituting for Fe atom can increase the Curie temperature obviously. In magnetic state, an anisotropic anomolous thermal expansion was observed. Along the c-axis, the average linear thermal expansion coefficient αc=-2.79×10-6/K in the temperature range 294-472K, and αc =-3.09×10-5/K in 472-592K. Along the a-axis, the average linear thermal expansion coefficient αa =9.22×10-6/K in 294-552K, and αa =-1.41×10-5/K in 552-592K. In the temperature range 472-592K, the average volume thermal expansion coefficient αv =-2.14×10-5/K. The mechanism of the thermal expansion anomaly of Gd2Fe16.5Cr0.5 compound was discussed in this paper.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!