
article i nfo Spatially-explicit knowledge of the timing, frequency, and intensity of forest disturbances is essential for for- est management, yet little is known about how disturbances such as forest harvests and insect outbreaks might accumulate in their effects over time. Capturing the many forest harvest and insect defoliation events occurring over twenty-five years, we transformed a series of Landsat images into cumulative disturbance maps covering Green Ridge State Forest (GRSF) and Savage River State Forest (SRSF) in western Maryland. These maps summed yearly ΔDI images, which were defined as the change in a yearly tasseled cap distur- bance index (DI), relative to a synthetic reference condition map created by finding the minimum DI value for all years. Intensive field-plot surveys and AVIRIS imagery collected during the summer of 2009 provided measurements of forest structure and canopy nitrogen. With these data, we found that while the most recent year's ΔDI had little relation, increases in the cumulative DI were related to decreased field-measured current canopy cover (R 2 =0.66 at GRSF, 0.67 at SRSF and 0.34 combined) and watershed-averaged AVIRIS canopy N
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
