Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inverse AERMOD and SCIPUFF Dispersion Modeling for Farm-Level PM10 Emission Rate Assessment

Authors: Bin Cheng; Aditya Padavagod Shiv Kumar; Lingjuan Wang-Li;

Inverse AERMOD and SCIPUFF Dispersion Modeling for Farm-Level PM10 Emission Rate Assessment

Abstract

HighlightsAERMOD and SCIPUFF were employed to back-calculate farm-level PM10 emission rates based on inverse modeling.Both AERMOD and SCIPUFF did not capture the diurnal and seasonal variations of farm-level PM10 emission rates.AERMOD modeling results were affected by wind speed, with higher wind speed leading to higher emission rates.Higher numbers of receptors and PM10 measurements with greater time resolution may be recommended in the future.Abstract. Air pollutant emissions from animal feeding operations (AFOs) have become a serious concern for public health and ambient air quality. Particulate matter with aerodynamic equivalent diameter less than or equal to 10 µm (PM10) is one of the major air pollutants emitted from AFOs. To assess the impacts of PM10 emissions from AFOs, knowledge about farm-level PM10 emission rates is needed but is challenging to obtain through field measurements. The inverse dispersion modeling approach provides an alternative way to estimate farm-level PM10 emission rates. In this study, two dispersion models, AERMOD and SCIPUFF, were employed to back-calculate farm-level PM10 emission rates based on hourly PM10 concentration measurements at four downwind locations in the vicinity of a commercial egg production farm in the southeast U.S. Onsite meteorological data were simultaneously recorded using a 10 m weather tower to facilitate the dispersion modeling. The modeling results were compared with PM10 emission measurements from two layer houses on the farm. Single-area source, double-area source, and double-volume source were used in AERMOD, while only single-point source was used in SCIPUFF. The inverse modeling results indicated that both SCIPUFF and AERMOD did not capture the diurnal and seasonal variations of the farm-level PM10 emission rates. In addition, the AERMOD modeling results were affected by wind speed, and higher emission rates may be predicted at higher wind speeds. The single-point source for SCIPUFF, the plume rise simplification for AERMOD, and insufficient concentration measurement resolution in response to temporal changes in wind direction may have added uncertainties to the modeling results. The results of this study suggest that more receptors covering more representative downwind locations should be considered in future modeling for farm-level emissions assessment. Moreover, ambient data collection with greater time resolution (e.g., less than one hour) is recommended to capture diurnal and seasonal patterns more rigorously. Only in this way can researchers achieve a better understanding of the effectiveness of inverse dispersion modeling for estimation of pollutant emission rates. Keywords: AERMOD, Animal feeding operations, Egg production, Farm-level emission rate, Inverse dispersion modeling, PM10, SCIPUFF.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!