Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith Research On...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models

Authors: Sallam, KM; Hossain, MA; Chakrabortty, RK; Ryan, MJ;

An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models

Abstract

The optimal operation of solar cells depends on the accurate determination of parameters in the Photovoltaic (PV) models, such as resistance and currents, which may vary due to unstable weathers conditions and equipment aging. The precise selection of these parameters resembles a multi-variable, nonlinear and multi-modal problem. Despite a few parameter extraction techniques being available to solve such a problem, more-accurate and advanced solutions still present a challenging research question. This paper therefore proposes an improved gaining-sharing knowledge (IGSK) algorithm to accurately and precisely extract the parameters of PV models. The improvement in the classical GSK algorithm is incorporated by introducing an adaptive mechanism to automatically adjust the value of the knowledge rate parameter. This adaptive mechanism ensures the balance between the number of dimensions updated by the junior gaining-sharing phase and the number of dimensions updated by the senior gaining-sharing phase. A bound-constraint handling method is also presented and a linear population size reduction technique is used to boost the speed of convergence and to maintain a tared-off between the exploration and exploitation properties. The efficacy of the proposed IGSK has been demonstrated by considering three different PV modules models, i.e., single diode, double diode, and PV modules and two other commercial ones (Thin Film ST40 and Mono-crystalline SM55). For those modules, the proposed IGSK receptively produces the following outcomes: 0.00098602188, 0.0009827277, 0.0024250749, 0.0017298137, and 0.016600603. The statistical obtained results demonstrate that the IGSK indicates competitive or even better performance on convergence speed, accuracy and reliability compared with other competing techniques. Therefore, the proposed approach is believed to be an effective and efficient alternative for parameter extraction of PV models.

Related Organizations
Keywords

Electronics, sensors and digital hardware, Mechanical engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%
Green