Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmaceutical Biolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pharmaceutical Biology
Article . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isolation and biological activity of compounds fromGarcinia preussii

Authors: Biloa Messi, Bernadette; Ho, Raimana; Meli Lannang, Alain; Cressend, Delphine; Perron, Karl; Nkengfack, Augustin Ephrem; Carrupt, Pierre-Alain; +2 Authors

Isolation and biological activity of compounds fromGarcinia preussii

Abstract

Plants of the genus Garcinia (Clusiaceae) are traditionally used to relieve stomachaches, toothaches, and as a chew stick.In order to determine which compounds were responsible for these activities, a phytochemical investigation of the fruits and leaves of Garcinia preussii Engl. was pursued.Plants were extracted by solvents of various polarities. Compounds isolation was then carried out using chromatography methods (medium- and high-pressure liquid chromatography, open column and thin-layer chromatography). The isolated compounds were identified and characterized by using 1D and 2D NMR spectroscopies. The antioxidant activity was evaluated using DPPH(•), ABTS(•-), ALP, and ORAC assays. The antimicrobial activity was assayed against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis by determining the minimum inhibitory concentration (MIC) value. The cytotoxic activity of most of the isolated compounds was evaluated on a small panel of human cancer cell lines (DU145, HeLa, HT-29, and A431) using the XTT method.The phytochemical investigation of G. preussii led to the isolation of eight known compounds, six benzophenones and two flavonoids. These compounds were tested for their biological activities. 1, 2, 3, 4, 7 and 8 demonstrated a high free radical scavenging activity with ER50 ranging from 0.1 to 0.7. The antimicrobial activity was shown only against Gram-positive bacteria for 1, 4, and 5. A moderate cytotoxic activity with IC50 ranging from 7 to 50 µM was observed, except for 6 which was not active.These results appear to support some of the properties reported for Garcinia species.

Country
Switzerland
Related Organizations
Keywords

580, Staphylococcus aureus, Plant Extracts, Plant Extracts/chemistry/isolation & purification/pharmacology, Microbial Sensitivity Tests, Antioxidants, Anti-Bacterial Agents, Plant Leaves, Antioxidants/chemistry/isolation & purification/pharmacology, 615, Fruit, Anti-Bacterial Agents/chemistry/isolation & purification/pharmacology, Staphylococcus aureus/drug effects/physiology, Humans, Microbial Sensitivity Tests/methods, Garcinia, HT29 Cells, HeLa Cells, ddc: ddc:615, ddc: ddc:580

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Average
gold
Related to Research communities
Cancer Research