Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematische Annale...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematische Annalen
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1994
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 1993
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recovering of curves with involution by extended Prym data

Authors: Kanev, Vassil;

Recovering of curves with involution by extended Prym data

Abstract

With every smooth, projective algebraic curve $\tilde{C}$ with involution $��:\tilde{C}\longrightarrow \tilde{C}$ without fixed points is associated the Prym data which consists of the Prym variety $P:=(1-��)J(\tilde{C})$ with principal polarization $��$ such that $2��$ is algebraically equivalent to the restriction on $P$ of the canonical polarization $��$ of the Jacobian $J(\tilde{C})$. In contrast to the classical Torelli theorem the Prym data does not always determine uniquely the pair $(\tilde{C},��)$ up to isomorphism. In this paper we introduce an extension of the Prym data as follows. We consider all symmetric theta divisors $��$ of $J(\tilde{C})$ which have even multiplicity at every point of order 2 of $P$. It turns out that they form three $P_2$ orbits. The restrictions on $P$ of the divisors of one of the orbits form the orbit $\{ 2��\} $, where $��$ are the symmetric theta divisors of $P$. The other restrictions form two $P_2$-orbits $O_1,O_2\subset \mid 2��\mid $. The extended Prym data consists of $(P,��)$ together with $O_1,O_2$. We prove that it determines uniquely the pair $(\tilde{C} ,��)$ up to isomorphism provided $g(\tilde{C})\geq 3$. The proof is analogous to Andreotti's proof of Torelli's theorem and uses the Gauss map for the divisors of $O_1,O_2$. The result is an analog in genus $>1$ of a classical theorem for elliptic curves.

31 p., LATEX 2.09

Country
Germany
Keywords

Picard schemes, higher Jacobians, extended Prym data, Torelli theorem, Prym variety, Article, Mathematics - Algebraic Geometry, 510.mathematics, polarization of the Jacobian, Gauss map, Theta functions and abelian varieties, FOS: Mathematics, Theta functions and curves; Schottky problem, Jacobians, Prym varieties, Algebraic Geometry (math.AG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze