
arXiv: 2106.01508
handle: 1721.1/142014
Many Beyond-Standard Model physics signatures are enhanced in high-energy neutrino interactions. To explore these signatures, ultra-large Cherenkov detectors such as IceCube exploit event samples with charged current muon neutrino interactions > 1 TeV. Most of these interactions occur below the detector volume, and produce muons that enter the detector. However, the large spacing between detectors leads to inefficiency for measuring muons with energies below or near the critical energy of 400 GeV. In response, IceCube has built a densely instrumented region within the larger detector. This provides large samples of well-reconstructed interactions that are contained within the densely instrumented region, extending up to energies of ~50 GeV. This leaves a gap of relatively unexplored atmospheric-neutrino events with energies between 50 GeV and 1 TeV in the ultra-large detectors. In this paper we point out that interesting Beyond Standard Model signatures may appear in this energy window, and that early running of the DUNE far detectors can give insight into new physics that may appear in this range.
10 pages, 9 figures, 1 table
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, High Energy Physics - Experiment
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, High Energy Physics - Experiment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
