Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroinfl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroinflammation
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroinflammation
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroinflammation
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access LMU
Article . 2021
Data sources: Open Access LMU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Age-dependent favorable visual recovery despite significant retinal atrophy in pediatric MOGAD: how much retina do you really need to see well?

Authors: Joachim Havla; Thivya Pakeerathan; Carolin Schwake; Jeffrey L. Bennett; Ingo Kleiter; Ana Felipe-Rucián; Stephanie C. Joachim; +11 Authors
APC: 2,345.06 EUR

Age-dependent favorable visual recovery despite significant retinal atrophy in pediatric MOGAD: how much retina do you really need to see well?

Abstract

Abstract Background To investigate age-related severity, patterns of retinal structural damage, and functional visual recovery in pediatric and adult cohorts of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) optic neuritis (ON). Methods All MOGAD patients from the 5 participating centers were included. Patients with initial manifestation <18 years were included in the pediatric (MOGADped) cohort and patients with ≥18 years in the adult (MOGADadult) cohort. For patients with MOGAD ON, examinations at least ≥6 months after ON onset were included in the analyses. Using spectral domain optical coherence tomography (SD-OCT), we acquired peripapillary retinal nerve fiber layer thickness (pRNFL) and volumes of combined ganglion cell and inner plexiform layer (GCIPL). High- and 2.5% low-contrast visual acuity (HCVA, LCVA) and visual-evoked potentials (VEP) were obtained. Results Twenty MOGADped (10.3±3.7 years, 30 MOGAD ON eyes) and 39 MOGADadult (34.9±11.6 years, 42 MOGAD ON eyes) patients were included. The average number of ON episodes per ON eye was similar in both groups (1.8±1.3 and 2.0±1.7). In both pediatric and adult MOGAD, ON led to pronounced neuroaxonal retinal atrophy (pRNFL: 63.1±18.7 and 64.3±22.9 μm; GCIPL: 0.42±0.09 and 0.44±0.13 mm3, respectively) and moderate delay of the VEP latencies (117.9±10.7 and 118.0±14.5 ms). In contrast, visual acuity was substantially better in children (HCVA: 51.4±9.3 vs. 35.0±20.6 raw letters, p=0.001; LCVA: 22.8±14.6 vs. 13.5±16.4, p=0.028). Complete visual recovery (HCVA-logMAR 0.0) occurred in 73.3% of MOGADped and 31% MOGADadults ON eyes, while 3.3% and 31% demonstrated moderate to severe (logMAR > 0.5) visual impairment. Independent of retinal atrophy, age at ON onset significantly correlated with visual outcome. Conclusion Pediatric MOGAD ON showed better visual recovery than adult MOGAD ON despite profound and almost identical neuroaxonal retinal atrophy. Age-related cortical neuroplasticity may account for the substantial discrepancy between structural changes and functional outcomes.

Country
Germany
Keywords

Adult, Male, Optic Neuritis, DISEASES::Nervous System Diseases::Neurologic Manifestations::Sensation Disorders::Vision Disorders, Adolescent, Vision Disorders/immunology [MeSH] ; Age Factors [MeSH] ; Optic Neuritis/immunology [MeSH] ; Retinal Degeneration/physiopathology [MeSH] ; Tomography, Optical Coherence [MeSH] ; Autoimmune Diseases of the Nervous System/diagnostic imaging [MeSH] ; Optic neuritis ; Cohort Studies [MeSH] ; Optical coherence tomography ; Male [MeSH] ; Optic Neuritis/complications [MeSH] ; Retina/diagnostic imaging [MeSH] ; Myelin-Oligodendrocyte Glycoprotein/immunology [MeSH] ; MOGAD ; Child [MeSH] ; Visual Acuity/immunology [MeSH] ; Autoimmune Diseases of the Nervous System/complications [MeSH] ; Retina/immunology [MeSH] ; Adolescent [MeSH] ; Female [MeSH] ; Retinal Degeneration/immunology [MeSH] ; Retina/physiopathology [MeSH] ; Recovery of Function [MeSH] ; Adult [MeSH] ; Humans [MeSH] ; Atrophy/immunology [MeSH] ; Middle Aged [MeSH] ; Autoimmune Diseases of the Nervous System/classification [MeSH] ; Myelin oligodendrocyte glycoprotein IgG ; Evoked Potentials, Visual [MeSH] ; Research ; Optic Neuritis/physiopathology [MeSH] ; Vision Disorders/physiopathology [MeSH] ; Child, Preschool [MeSH], NAMED GROUPS::Persons::Age Groups::Child, Neurologia pediàtrica, Vision Disorders, Optic neuritis, Trastorns de la visió, DENOMINACIONES DE GRUPOS::personas::Grupos de Edad::niño, Retina, MOGAD, Cohort Studies, Autoimmune Diseases of the Nervous System, ENFERMEDADES::enfermedades del sistema nervioso::manifestaciones neurológicas::trastornos sensoriales::trastornos de la visión, Myelin oligodendrocyte glycoprotein IgG, Humans, RC346-429, Child, Other subheadings::Other subheadings::Other subheadings::/immunology, TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS Y TERAPÉUTICOS::técnicas de investigación::imágenes ópticas::tomografía óptica::tomografía de coherencia óptica, ANALYTICAL, DIAGNOSTIC AND THERAPEUTIC TECHNIQUES, AND EQUIPMENT::Investigative Techniques::Optical Imaging::Tomography, Optical::Tomography, Optical Coherence, Optical coherence tomography, Retina - Malalties - Imatgeria, Research, Retinal Degeneration, Age Factors, Recovery of Function, Middle Aged, Otros calificadores::Otros calificadores::Otros calificadores::/inmunología, Child, Preschool, Evoked Potentials, Visual, Female, Myelin-Oligodendrocyte Glycoprotein, Neurology. Diseases of the nervous system, Atrophy, Tomography, Optical Coherence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Green
gold