Downloads provided by UsageCounts
handle: 10016/34074
A novel methodology is presented to introduce Periodic Boundary Conditions (PBC) on periodic Representative Volume Elements (RVE) in Finite Element (FE) solvers based on dynamic explicit time integration. This implementation aims at overcoming the difficulties of the explicit FE method in dealing with standard PBC. The proposed approach is based on the implementation of a user-defined element, named a Periodic Boundary Condition Element (PBCE), that enforces the periodicity between periodic nodes through a spring-mass-dashpot system. The methodology is demonstrated in the multiscale simulation of composite materials. Two showcases are presented: one at the scale of computational micromechanics, and another one at the level of computational mesomechanics. The first case demonstrates that the proposed PBCE allows the homogenization of composite ply properties through the explicit FE method with increased efficiency and similar reliability with respect to the equivalent implicit simulations with traditional PBC. The second case demonstrates that the PBCE coupled with Periodic Laminate Elements (PLE) can effectively be applied to the computational homogenization of elastic and strength properties of entire laminates taking into account highly nonlinear effects. Both cases motivate the application of the methodology in multiscale virtual testing in support of the building-block certification of composite materials.
Explicit FEM, Periodic Boundary Conditions (PBC), Ingeniería Mecánica, Homogenization, Multiscale computational mechanics, Composite materials
Explicit FEM, Periodic Boundary Conditions (PBC), Ingeniería Mecánica, Homogenization, Multiscale computational mechanics, Composite materials
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 17 | |
| downloads | 125 |

Views provided by UsageCounts
Downloads provided by UsageCounts