Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2002 . Peer-reviewed
Data sources: Crossref
Critical Reviews in Plant Sciences
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molybdoenzymes and molybdenum cofactor in plants

Authors: Ralf R, Mendel; Robert, Hänsch;

Molybdoenzymes and molybdenum cofactor in plants

Abstract

The transition element molybdenum (Mo) is essential for (nearly) all organisms and occurs in more than 40 enzymes catalysing diverse redox reactions, however, only four of them have been found in plants. (1) Nitrate reductase catalyses the key step in inorganic nitrogen assimilation, (2) aldehyde oxidase(s) have been shown to catalyse the last step in the biosynthesis of the phytohormone abscisic acid, (3) xanthine dehydrogenase is involved in purine catabolism and stress reactions, and (4) sulphite oxidase is probably involved in detoxifying excess sulphite. Among Mo-enzymes, the alignment of amino acid sequences permits domains that are well conserved to be defined. With the exception of bacterial nitrogenase, Mo-enzymes share a similar pterin compound at their catalytic sites, the molybdenum cofactor. Mo itself seems to be biologically inactive unless it is complexed by the cofactor. This molybdenum cofactor combines with diverse apoproteins where it is responsible for the correct anchoring and positioning of the Mo-centre within the holo-enzyme so that the Mo-centre can interact with other components of the enzyme's electron transport chain. A model for the three-step biosynthesis of Moco involving the complex interaction of six proteins will be described. A putative Moco-storage protein distributing Moco to the apoproteins of Mo-enzymes will be discussed. After insertion, xanthine dehydrogenase and aldehyde oxidase, but not nitrate reductase and sulphite oxidase, require the addition of a terminal sulphur ligand to their Mo-site, which is catalysed by the sulphur transferase ABA3.

Related Organizations
Keywords

Molybdenum, Arabidopsis Proteins, Xanthine Dehydrogenase, Pteridines, Coenzymes, Plants, Aldehyde Oxidoreductases, Nitrate Reductase, Enzymes, Aldehyde Oxidase, Nitrate Reductases, Metalloproteins, Mutation, Oxidoreductases Acting on Sulfur Group Donors, Molybdenum Cofactors, Sulfur, Abscisic Acid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    252
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
252
Top 1%
Top 1%
Top 10%
bronze