Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 1998
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 1998 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 1998
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation

Authors: Brown, Fraser D.; Thompson, Nicola; Saqib, Khalid M.; Clark, Joanna M.; Powner, Dale; Thompson, Neil T.; Solari, Roberto; +1 Authors

Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation

Abstract

Phospholipase D (PLD) activity has been implicated in the regulation of membrane trafficking [1,2], superoxide generation and cytoskeletal remodelling [3,4]. Several PLD genes have now been identified and it is probable that different isoforms regulate distinct functions. Defining the subcellular localisation of each isoform would facilitate understanding of their roles. Previous PLD localisation studies have been based largely on enzyme activity measurements, which cannot distinguish between isoforms [2,5]. We have cloned the cDNAs encoding human PLD1a and PLD1b from an HL60 cell cDNA library and expressed them as catalytically active fusion proteins with green fluorescent protein (GFP) in COS-1 cells and RBL-2H3 cells, a mast cell model which degranulates upon cross-linking of the high-affinity immunoglobulin E (IgE) receptor. In unstimulated cells, GFP-PLD1b colocalised with secretory granule and lysosomal markers; it was not found at the plasma membrane or nucleus and did not colocalise with markers for the Golgi. Stimulation or RBL-2H3 cells through IgE receptor cross-linking caused plasma membrane recruitment of GFP-PLD1b. Inhibition of IgE-receptor-stimulated, PLD-catalysed phosphatidate formation suppressed secretion of granule and lysosomal contents, but did not affect translocation of GFP-PLD1b. These experiments suggest that PLD1 plays a role in regulated exocytosis rather than endoplasmic reticulum (ER) to Golgi membrane transport.

Related Organizations
Keywords

Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Receptors, IgE, Recombinant Fusion Proteins, Cell Membrane, Green Fluorescent Proteins, Golgi Apparatus, HL-60 Cells, Cytoplasmic Granules, Transfection, Rats, Luminescent Proteins, Leukemia, Basophilic, Acute, COS Cells, Phospholipase D, Tumor Cells, Cultured, Animals, Humans, Mast Cells, Cloning, Molecular, Lysosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    190
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
190
Top 10%
Top 10%
Top 1%
hybrid