Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages

Authors: Olivier Letonqueze; Ju Huck Lee; Shobha Vasudevan; Samuel S. Truesdell; Syed I. A. Bukhari; Sooncheol Lee;

Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages

Abstract

Significance This study uncovers a critical role for a general translation factor in specific developmental stages, including immature oocytes and ES cells, and during growth-factor deprivation of mammalian cells, which induces the transition to cell-cycle arrest. These conditions alter and decrease general translation yet maintain ongoing translation. We reveal upregulation of the eukaryotic translation factor 5B (eIF5B), which becomes essential for general translation, specifically in these conditions. Importantly, our data demonstrate that eIF5B controls these cell-cycle transition and developmental stages, promoting oocyte maturation and inhibiting cell-cycle arrest. These findings underscore the importance of translational regulation in cell-cycle transitions and development.

Related Organizations
Keywords

RNA, Transfer, Met, Cell Survival, Eukaryotic Initiation Factor-2, Cell Cycle Checkpoints, Culture Media, Serum-Free, Cell Line, Up-Regulation, Mice, Xenopus laevis, Protein Biosynthesis, Oocytes, Animals, Humans, Eukaryotic Initiation Factors, Phosphorylation, Embryonic Stem Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze