Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetologia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Diabetologia
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Diabetologia
Article . 2005
versions View all 2 versions
addClaim

Allelic variation in class I K gene as candidate for a second component of MHC-linked susceptibility to Type 1 diabetes in non-obese diabetic mice

Authors: K, Inoue; H, Ikegami; T, Fujisawa; S, Noso; K, Nojima; N, Babaya; M, Itoi-Babaya; +2 Authors

Allelic variation in class I K gene as candidate for a second component of MHC-linked susceptibility to Type 1 diabetes in non-obese diabetic mice

Abstract

Recent studies have revealed that MHC-linked susceptibility to Type 1 diabetes is determined by multiple components. In the non-obese diabetic (NOD) mouse, a second component (Idd16) has been mapped to a region adjacent to, but distinct from Idd1 in the class II region. In this study, we investigated the class I K gene as a candidate gene for Idd16.We determined the genomic sequences of the class I K gene as well as the reactivity of K molecules with monoclonal antibodies in the NOD mouse, the Cataract Shionogi (CTS) mouse, and the NOD.CTS-H-2 congenic strain, which possesses a resistance allele to Type 1 diabetes at the Idd16 on the NOD genetic background genes.While the K sequence of the NOD mouse was identical to that of Kd type, ten nucleotide substitutions were identified in the CTS mouse compared with the NOD mouse. Of these, three were in exon 4, giving two amino acid substitutions, which were identical to those seen in KK type. These characteristics were retained in the NOD.CTS-H-2 congenic strain, which had a lower incidence and delayed onset of Type 1 diabetes owing to a resistance allele at Idd16. Lymphocytes from NOD.CTS-H2 congenic mice reacted with anti-Kd and anti-Kk monoclonal antibodies, reflecting the unique sequence of the K gene. The nucleotide sequence of the K gene in the non-obese non-diabetic (NON) mouse was also unique, consisting of a combination of Kk- and Kb-like sequences.These data suggest that H2-K is unique in CTS and NON mice, and that allelic variation of the class I K gene may be responsible for Idd16.

Related Organizations
Keywords

Base Sequence, Molecular Sequence Data, Antibodies, Monoclonal, Genes, MHC Class I, Genetic Variation, Mice, Inbred Strains, DNA, Exons, Introns, Mice, Mice, Congenic, Diabetes Mellitus, Type 1, Mice, Inbred NOD, Animals, Lymphocytes, Alleles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
bronze