Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CATENAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CATENA
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CATENA
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A glimpse into the northernmost thermo-erosion gullies in Svalbard archipelago and their implications for Arctic cultural heritage

Authors: Nicu, Ionut Cristi; Tanyas, H.; Rubensdotter, Lena; Lombardo, L.;

A glimpse into the northernmost thermo-erosion gullies in Svalbard archipelago and their implications for Arctic cultural heritage

Abstract

Gully erosion is one of the most destructive geomorphological processes on relatively flat surfaces. This is exacerbated in the Arctic regions, where gullies are referred to as thermo-erosion gullies because of their unique connection to permafrost. As the surface of the permafrost freezes and thaws, soil particles destabilize, inducing erosion along preferential incisions, giving rise to widespread thermo-erosion gullies. In this study, we present the first thermo-erosion gully inventory in the Svalbard region (Nordenskiöld Land). The inventory was created using a combination of available aerial photographs from 2009 to 2011, direct field observations and measurements. The spatial distribution of thermo-erosion gullies is then exploited to investigate potential threats to the Arctic cultural heritage (CH). Analyses of thermo-erosion gullies are increasingly important for artic administrations, which require more detailed hazard assessments as the effect of climate change becomes increasingly evident across these landscapes. The inventory is comprised of 810 thermo-erosion gullies in Nordenskiöld Land, most of which are located in close proximity to coastlines. We assess the inventory size statistics and correlation with terrain characteristics to investigate potential predisposing factors. No gullies occurs at elevations greater than 200 m a.s.l., but gullies occur up to a maximum steepness of 37 degrees and along the whole topographic profile and, looking at the potential threat to CH, we found 44 of these sites within a 100 m buffer from the gullies. This distance is the reference that local administrations use to prioritize actions and safeguard the existence of artic CH sites. In fact, a 100 m distance implies that future evolution of thermo-erosion gullies, especially enhanced by climate change may eventually erode away soil from the CH surroundings, threatening their stability and existence.

Country
Netherlands
Keywords

Svalbard, ITC-HYBRID, Arctic, Thermo-erosion gullying, ITC-ISI-JOURNAL-ARTICLE, Cultural heritage, SDG 13 - Climate Action, Climate change, Thermokarst

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
hybrid