
doi: 10.3390/a14020040
Fitness landscapes were proposed in 1932 as an abstract notion for understanding biological evolution and were later used to explain evolutionary algorithm behaviour. The last ten years has seen the field of fitness landscape analysis develop from a largely theoretical idea in evolutionary computation to a practical tool applied in optimisation in general and more recently in machine learning. With this widened scope, new types of landscapes have emerged such as multiobjective landscapes, violation landscapes, dynamic and coupled landscapes and error landscapes. This survey is a follow-up from a 2013 survey on fitness landscapes and includes an additional 11 landscape analysis techniques. The paper also includes a survey on the applications of landscape analysis for understanding complex problems and explaining algorithm behaviour, as well as algorithm performance prediction and automated algorithm configuration and selection. The extensive use of landscape analysis in a broad range of areas highlights the wide applicability of the techniques and the paper discusses some opportunities for further research in this growing field.
landscape analysis, fitness landscape, Industrial engineering. Management engineering, error landscape, QA75.5-76.95, T55.4-60.8, automated algorithm selection, Electronic computers. Computer science, violation landscape
landscape analysis, fitness landscape, Industrial engineering. Management engineering, error landscape, QA75.5-76.95, T55.4-60.8, automated algorithm selection, Electronic computers. Computer science, violation landscape
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 115 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
