
Nowadays, Internet of Things platforms are being deployed in a wide range of application domains. Some of these include use cases with security requirements, where the data generated by an IoT node is the basis for making safety-critical or liability-critical decisions at system level. The challenge is to develop a solution for data exchange while proving and verifying the authenticity of the data from end-to-end. In line with this objective, this paper proposes a novel solution with the proper protocols to provide Trust in Data, making use of two Roots of Trust that are the IOTA Distributed Ledger Technology and the Trusted Platform Module. The paper presents the design of the proposed solution and discusses the key design aspects and relevant trade-offs. The paper concludes with a Proof-of-Concept implementation and an experimental evaluation to confirm its feasibility and to assess the achievable performance.
Distributed Ledger Technology; Internet of Things; IOTA Tangle; Remote Attestation; Trusted Computing, Computer Science - Cryptography and Security
Distributed Ledger Technology; Internet of Things; IOTA Tangle; Remote Attestation; Trusted Computing, Computer Science - Cryptography and Security
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
