Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lunar Mare Soils: Space weathering and the major effects of surface‐correlated nanophase Fe

Authors: Lawrence A. Taylor; Carlé M. Pieters; Lindsay P. Keller; Richard V. Morris; David S. McKay;

Lunar Mare Soils: Space weathering and the major effects of surface‐correlated nanophase Fe

Abstract

Lunar soils form the “ground truth” for calibration and modeling of reflectance spectra for quantitative remote sensing. The Lunar Soil Characterization Consortium, a group of lunar sample and remote sensing scientists, has undertaken the extensive task of characterization of lunar soils, with respect to their mineralogical and chemical makeup. This endeavor is aimed at deciphering the effects of space weathering of soils from the Moon, and these results should apply to other airless bodies. Modal abundances and chemistries of minerals and glasses in the <45 μm size fractions of nine selected mare soils have been determined, along with the bulk chemistry of each size fraction, and their IS/FeO values. These data can be addressed at http:/web.utk.edu/∼pgi/data.html. As grain size decreases, the bulk composition of each size fraction continuously changes and approaches the composition of the agglutinitic glasses. Past dogma had it that the majority of the nanophase Fe0 resides in the agglutinitic glasses. However, as grain size of a soil decreases, the percentage of the total iron present as nanophase‐sized Fe0 increases dramatically, while the agglutinitic glass content rises only slightly. This is evidence for a large contribution to the IS/FeO values from surface‐correlated nanophase Fe0, particularly in the <10 μm size fraction. This surficial nanophase Fe0 is present largely as vapor‐deposited patinas on the surfaces of almost every particle of the mature soils. It is proposed that these vapor‐deposited, nanophase Fe0‐bearing patinas may have far greater effects upon reflectance spectra of mare soils than the agglutinitic Fe0.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    272
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
272
Top 1%
Top 1%
Top 10%
bronze