Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relating three combinatorial formulas for type $A$ Whittaker functions

Authors: Lenart, Cristian; Sidoli, James;

Relating three combinatorial formulas for type $A$ Whittaker functions

Abstract

In this work we study the relationship between several combinatorial formulas for type $A$ spherical Whittaker functions. These are spherical functions on $p$-adic groups, which arise in the theory of automorphic forms. They depend on a parameter $t$, and are a specialization of Macdonald polynomials, and further specialize to Schur polynomials upon setting $t=0$. There are three types of formulas for these polynomials. The first formula is in terms of so-called alcove walks, works in arbitrary Lie type, and is derived from the Ram-Yip formula for Macdonald polynomials. The second one is in terms of certain fillings of Young diagrams, and is derived from, or is analogous to the Haglund-Haiman-Loehr formula for Macdonald polynomials. The third formula is in terms of the classical semistandard Young tableaux. We study the way in which each such formula is obtained from the previous one by combining terms $-$ a phenomenon called compression. No such results existed in the case of Whittaker functions.

30 pages, 6 figures

Related Organizations
Keywords

05E05 (Primary) 33D52, 20F55 (Secondary), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Representation Theory (math.RT), Mathematics - Representation Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green