Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Power Electronics and Drive Systems
Article . 2020 . Peer-reviewed
License: CC BY SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Battery energy storage system (BESS) design for peak demand reduction, energy arbitrage and grid ancillary services

Authors: Wan Syakirah Wan Abdullah; Miszaina Osman; Mohd Zainal Abidin Ab Kadir; Renuga Verayiah;

Battery energy storage system (BESS) design for peak demand reduction, energy arbitrage and grid ancillary services

Abstract

<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.</span><table class="MsoNormalTable" style="width: 444.85pt; border-collapse: collapse; border: none; mso-border-alt: solid windowtext .5pt; mso-yfti-tbllook: 1184; mso-padding-alt: 0in 5.4pt 0in 5.4pt; mso-border-insideh: .5pt solid windowtext; mso-border-insidev: .5pt solid windowtext;" width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr style="mso-yfti-irow: 0; mso-yfti-firstrow: yes; mso-yfti-lastrow: yes; height: 63.4pt;"><td style="width: 290.6pt; border: none; border-top: solid windowtext 1.0pt; mso-border-top-alt: solid windowtext .5pt; padding: 0in 5.4pt 0in 5.4pt; height: 63.4pt;" valign="top" width="387"><p class="MsoNormal" style="margin-top: 6.0pt; text-align: justify;"><span style="font-size: 9.0pt; color: black; mso-bidi-font-style: italic;">Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.</span></p></td></tr></tbody></table>

Related Organizations
Keywords

Renewable energy, Virtual power plant, Bill savings, Battery energy storage system

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 8
  • 3
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Average
Average
Average
3
8
Green
gold