
Clustered Low Rank (CLR) framework for block-sparse and block-low-rank tensor representation and computation is described. The CLR framework depends on 2 parameters that control precision: one controlling the CLR block rank truncation and another that controls screening of small contributions in arithmetic operations on CLR tensors. As these parameters approach zero CLR representation and arithmetic become exact. There are no other ad-hoc heuristics, such as domains. Use of the CLR format for the order-2 and order-3 tensors that appear in the context of density fitting (DF) evaluation of the Hartree-Fock (exact) exchange significantly reduced the storage and computational complexities below their standard $\mathcal{O}(N^3)$ and $\mathcal{O}(N^4)$ figures. Even for relatively small systems and realistic basis sets CLR-based DF HF becomes more efficient than the standard DF approach, and significantly more efficient than the conventional non-DF HF, while negligibly affecting molecular energies and properties.
11 pages, 13 figures
Chemical Physics (physics.chem-ph), Physics - Chemical Physics, FOS: Physical sciences
Chemical Physics (physics.chem-ph), Physics - Chemical Physics, FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
