Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low complexity hybrid sparse precoding and combining in millimeter wave MIMO systems

Authors: Cristian Rusu; Roi Méndez-Rial; Nuria González-Prelcic; Robert W. Heath Jr.;

Low complexity hybrid sparse precoding and combining in millimeter wave MIMO systems

Abstract

Millimeter wave (mmWave) multiple-input multipleoutput (MIMO) communication with large antenna arrays has been proposed to enable gigabit per second communication for next generation cellular systems and local area networks. A key difference relative to lower frequency solutions is that in mmWave systems, precoding/combining can not be performed entirely at digital baseband, due to the high cost and power consumption of some components of the radio frequency (RF) chain. In this paper we develop a low complexity algorithm for finding hybrid precoders that split the precoding/combining process between the analog and digital domains. Our approach exploits sparsity in the received signal to formulate the design of the precoder/combiners as a compressed sensing optimization problem. We use the properties of the matrix containing the array response vectors to find first an orthonormal analog precoder, since sparse approximation algorithms applied to orthonormal sensing matrices are based on simple computations of correlations. Then, we propose to perform a local search to refine the analog precoder and compute the baseband precoder. We present numerical results demonstrate substantial improvements in complexity while maintaining good spectral efficiency.

Country
Ireland
Keywords

Electronic computers. Computer science, 621, Computer software, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!